Intense Pulsed Light-Driven Flip-Chip Bonding for Energy-Efficient and Sustainable Packaging

7.3.2025

Prof. Hak-Sung Kim

Department of Mechanical Engineering

Director of Center for Advanced Semiconductor Packaging

1

Contents

01	Introduction	
02	Experiment	
03	Results and discussion	
04	Future work	

* Research Introduction - Prof. Hak-Sung Kim

- Principal Investigator: Prof. Hak-Sung Kim
- Major Academic & Career Background

✓ Professor, Hanyang University [2010 ~ Present] ✓ Research Distinguished Professor, Hanyang University [2020 ~ Present] ✓ Director, Advanced Semiconductor Packaging Research Center, Hanyang University [2022 ~ Present]

√ Vice-President, Korea Microelectronics and Packaging Society [2024 ~ Present]

- Research Experience: 30+ students under Prof. Kim's supervision
- Patents: 170+ domestic and international publications
- Research Performance: 198+ projects
- SCI Publications: 222+ international / 29+ domestic
- ✓ ACS Applied Materials & Interfaces, in press (2025), IF : 8.5 (2023 JCR) √ Composites Part : B, 304, 112693 (2025), IF : 12.7 (2023 JCR) √ Materials & Design, 103, 796-808 (2025), IF : 7.6 (2023 JCR) √ Materials Letters, 396, 131996 (2023), IF : 11.2 (2022 JCR) √ Advanced Composited and Hybrid Materials, 6(5), 182 (2023), IF : 20.1 (2022 JCR) √ Nano Research, 11, 2190-2203 (2018), IF : 9.9 (2022 JCR)
- **Research Areas** •
- ✓ Semiconductor Package Reliability/Mechanics Performance Evaluation/Analysis Technology
- Next-generation Semiconductor Package Process Technology Development
- Terahertz Wave-based Material Characterization Technology Development
- ✓ Terahertz Wave-based Real-time Semiconductor Package Inspection Technology Development
- Advanced Composite Materials Precision Analysis and Multi-functional Composite Structure Design Research
- Artificial Intelligence Application Technology Development
- Printed Electronics Technology Development

FABRICATION & PROCESS

EMC molding

Solder ball & Cu pillar

RDL patterning Design

(creep, IMC, fatigue)

Adhesion

(a) CVD dielectric layer (b) PR process Dielectric lave (d) Deposition Ti/Cu (e) Cu electroplating

(c) Dielectric layer etching (f) CMP

Cu

IPL bonding / Flux-less bonding / Hybrid bonding

Inspection

EMC thickness, PKG warpage, chip alignment inspection / Stealth diced line inspection

Glass

Reliability

TGV/Interposer

Warpage

Cu (ASD: 1

Cu (ASD: 1) + PI 7품

한양대학교

HANYANG UNIVERSITY

한양스마트반도체연구원

(.....)

Semiconductor Packaging Evolution: Toward High Integration

▲ Package type trend

▲ Interconnection trend

Source) Lau, J. H. (2010, December). Evolution and outlook of TSV and 3D IC/Si integration. In 2010 12th Electronics Packaging Technology Conference (pp. 560-570). IEEE.

- A highly integrated semiconductor package product is required.
- Package and interconnection type with various structures and sizes are being developed.
- The interconnection processes is also changing according to the package trend.

▲ Global Short-term and Long-term Risk Rankings

▲ CO₂ Emission Proportion in Semiconductor Manufacturing Process

Source) McKinsy & Company https://www.mckinsey.com

- Energy consumption in semiconductor manufacturing is identified as a critical global risk factor
- CO₂ emissions primarily come from process gases, manufacturing tools, and facility operations
- The industry urgently needs energy-efficient manufacturing technologies to meet sustainability goals

* Conventional Interconnection: Mass Reflow Process

▲ Industrial reflow soldering equipment

▲ JEDEC J-STD-020C Reflow Profile

- Mass reflow is <u>most used</u> interconnection method in many application such as flip-chip die attach, ball mounting, and surface mount technology.
- Reflow machine consists of zones of <u>different temperatures</u>.
- The temperature profile follows <u>JEDEC standard</u>.

* Challenges of Mass Reflow: Package Warpage

▲ Warpage in reflow process

▲ Solder joint reliability issues from warpage

- The heat is applied to <u>the entire packages</u> during long process time in reflow zone.
- Therefore, <u>warpage occurs due to the difference CTE</u> between silicon chip and PCB during mass reflow.

한양스마트반도체연구원

* Advanced Packages: More Vulnerable to Warpage in Mass Reflow

- Advanced packages (FO-WLP, PoP, HBM, SiP) are inherently more susceptible to warpage due to their complex structure.
- The combination of ultra-thin components and heterogeneous materials amplifies warpage in mass reflow.
- Conventional mass reflow becomes increasingly problematic as package complexity increases. 한양대학교

8

* Intense pulsed light (IPL) Technology and Applications

IPL applications 1. Metal particles sintering: ultra-fast, low-temperature process Xenon 500 nm NST 15.0kV 100K Vacuum holding Source) Ryu, C. H., Joo, S. J., & Kim, H. S. (2019). Intense pulsed light sintering of Cu nano particles/micro particles-ink assisted with heating and vacuum holding of substrate for warpage free printed electronic circuit. *Thin Solid Films*, 675, 23-33. 2. Nanowire welding: selective heating, minimal substrate damage (b) i) iii) **Transparent Flexible** Energy Harvester Ag NW Solution Source) Park, J. H., Hwang, G. T., Kim, S., Seo, J., Park, H. J., Yu, K., ... & Lee, K. J. (2017). Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Advanced Materials, 29(5), 1603473. Self-Limited **Plasmonic Welding**

* Mechanism of Intense Pulsed Light (IPL) Bonding Process

(1) Initiation of IPL irradiation $(T < 217^{\circ}C)$

- Silicon absorbs IPL energy
- Rapid photo-thermal conversion

(Cooling stage)

Source) Ju, Y. M., Ryu, S. U., Park, J. W., & Kim, H. S. (2025). Ultra-Millisecond Flip-Chip Bonding Process via Intense Pulsed Light Irradiation. ACS Applied Materials & Interfaces.

(4) Solidification & IMC growth

- Rapid cooling
- Controlled IMC thickness

- During IPL bonding process, the heat generated by photothermal effect in silicon die is rapidly transferred to ٠ solder bump.
- The ultra-fast heating enables melting and bonding within milliseconds, minimizing thermal exposure. ٠
- Controlled IMC formation at the interface ensures reliable interconnection with minimal thickness.

한양대학교 HANYANG UNIVERSITY

한양스마트반도체연구원

* Comparison of Interconnection Methods: Limitations and IPL Advantages

- Various interconnection methods have been developed to address the limitations of conventional reflow
- Each alternative method has its own drawbacks limiting widespread adoption
- IPL bonding combines the advantages of existing methods while overcoming their limitations

* Research Objective

Conventional Mass Reflow

- The objective of this study is to demonstrate IPL bonding as a viable alternative to conventional mass reflow
- Key focus: Process optimization, reliability assessment, and scalability for flip-chip applications
- Goal: Achieve superior bonding quality with reduced energy, time, and thermal damage

IPL bonding process

Contents

01	Introduction
02	Experiment
03	Results and discussion
04	Future work

한양대학교

HANYANG UNIVERSITY

한양스마트반도체연구원

۳

***** Flip-chip Test Sample Preparation

- SAC305 (Sn-3.0Ag-0.5Cu) was selected as the most widely used lead-free solder.
- Three daisy chain patterns enable location-specific resistance monitoring during bonding.

Flip-chip pattern

* In-situ Temperature and Resistance Monitoring Systems

Dual in-situ monitoring system provides comprehensive process data during IPL bonding.

Temperature measurement tracks thermal profile precisely

▲ Measure the temperature

내악교 IANYANG UNIVERSITY 한양스마트반도체연구원

•

•

***** IPL Process Parameters and Control

• <u>The IPL energy</u> can be controlled under conditions such as <u>pulse on/off time, pulse number, power and frequency</u>.

<Appendix : Parametric Exp.>

• The <u>heat transfer modeling</u> was carried out using Abaqus CAE, and the properties (density, heat capacity, thermal conductivity) of each layer were referenced from relevant literature.

01	Introduction	
02	Experiment	
03	Result and discussion	
04	Future work	

* In-situ Temperature and Resistance Monitoring of IPL Flip-chip Bonding Process

<<u>Appendix : 1. Pulse On-time></u> <<u>Appendix : 2. Frequency></u>

Representative in-situ monitoring results (On-time : 1.5 ms (= Irradiation energy : 0.933 kW/cm²), Frequency : 100 Hz, and Pulse number : #100)

Finding

- Bonding completed at ~217°C (resistance drop)
- But temperature keeps rising to \sim 350°C
- Excessive heating after bonding completion

Objective

- Find minimum pulses for reliable bonding
- Target : Peak temperature ~ 220°C (Solder melting point : 217°C)

- Thermal simulation was conducted to predict optimal pulse number for IPL flip-chip bonding process.
- Simulation results predicted that 30 pulses would be insufficient ($174^{\circ}C < 217^{\circ}C$ melting point), while 50 pulses would cause excessive heating ($267^{\circ}C$).
- Based on simulation, 40 pulses was identified as the theoretical optimum, achieving 219°C, above the melting point, with minimal heat excess.

* In-situ Temperature and Resistance Monitoring of IPL Flip-chip Bonding Process

Pulse number optimization study (Experiment)

- Experimental validation was performed based on simulation predictions using in-situ temperature and resistance monitoring.
- The experimental results confirmed simulation predictions: 30 pulses failed to achieve bonding (173°C), while 40 pulses successfully achieved bonding at 221°C.

- Excellent correlation between simulation and experimental results validates the thermal model's accuracy. ٠
- The simulation-guided optimization successfully identified 40 pulses as optimal, achieving reliable bonding at the lowest temperature ٠ (221.7°C) while avoiding both under-heating and thermal damage.

Θ

* Cross-sectional SEM image of flip-chip package solder joint

■ IMC(Intermetallic compound) thickness and microstructures

• SEM analysis confirms successful solder joint formation for all IPL conditions tested, with no visible defects or voids.

* Cross-sectional SEM image of flip-chip package solder joint

IMC(Intermetallic compound) thickness and microstructures

* Mechanical Reliability Evaluation by Die Shear Test

<Appendix : Die shear test configuration>

Sample	Process		Max die shear force (kg)	IMC thick. (um)
SAC305 PKG (pitch: 1000 um, thick: 500 um)	Mass Reflow		8.028	6
	IPL bonding (Pulse number)	#40	10.514	0.8
		#50	10.491	2
		#100	5.09	6

- In the case of IPL #50 and #40 specimens, a relatively <u>30% higher shear force</u> was measured compared to the reflow specimens.
- On the other hand, the IPL #100 specimen showed a comparatively lower shear force.

* Mechanical Reliability Evaluation by Die Shear Test

Fracture analysis

***** IPL vs Reflow Process Comparison: Temperature Profile & Processing Time

Item	IPL (Intense Pulsed Light)	Reflow (Conventional Hot Air)
Processing Method	Instantaneous High-Intensity Light	Continuous Hot Air Heating
Maximum Temperature	221.7°C	250°C
Processing Time	1~2 seconds (40 pulses)	5 minutes (300 seconds)
Temperature Rise Rate	Ultra-high speed	Gradual

***** IPL vs Reflow Process Comparison: Energy Consumption

	IPL (Intense Pulsed Light)	Reflow (Conventional Hot Air)	
Peak Power	933W	2,700W	
Average Power	140W	1,890W	
Processing Time	0.4 seconds	300 seconds	
Energy Consumption	0.056 kWh	0.16 kWh	
Energy Efficiency	3x superior	Baseline	

IPL Conditions:

- •On-time: 1.5 ms per pulse
- •Off-time: 8.5 ms per pulse
- •Power density: 0.933 kW/cm²
- •Pulse number: 40 pulses
- •Processing area: 1 cm^2 (10mm × 10mm chip)
- •Total processing time: 0.4 seconds
- •Peak temperature: 221.7°C

Reflow Conditions:

- •Power rating: 2.7 kW (15A @ 220V)
- •Processing time: 5 minutes (300 seconds)
- •Average power utilization: 70% (temperature profile consideration)
- •Peak temperature: 250°C

Note: *Energy consumption values are estimated based on equipment specifications and typical operating conditions. Actual values may vary depending on specific equipment models and operating parameters.*

[1] IPL Energy = Peak Power × Total On-time = $933W \times (40 \times 1.5ms) = 933W \times 0.06s = 0.056$ kWh

[2] Reflow Energy = Average Power × Processing Time = $(2.7 \text{kW} \times 0.7) \times (5/60)\text{h} = 1.89 \text{kW} \times 0.083 \text{h} = 0.16 \text{kWh}$

01	Introduction	
02	Experiment	
03	Result and discussion	
04	Future work	

Thank you

Parametric Investigation of IPL Bonding Process

Objectives

Optimize IPL parameters for damage-free bonding

Minimize process time while ensuring reliability

Case	Variable	On-time (ms)	Frequency (Hz)	Pulse number (counts)	Irradiation energy (J/cm ²)
1		1	100	100	1.4
2	On-time	1.5	100	100	1.4
3		2.25	100	100	1.4
4		1.5	100	100	1.4
5	Frequency	1.5	90	100	1.4
6		1.5	80	100	1.4
7		1.5	100	50	1.4
8	Pulse number	1.5	100	40	1.4
9		1.5	100	30	1.4

Table 1. Experimental conditions of IPL bonding process

<Back>

***** Effect of Pulse On-time on Temperature Profile

■ IPL parameter with On-time

- To verify the <u>effect of pulse on-time</u>, it was irradiated under <u>three conditions (2.25, 1.5, and 1 ms)</u>. ٠
- The shorter the on-time, the higher the temperature achieved. .

***** Effect of Frequency on Temperature Profile

■ IPL parameter with pulse frequency

٠

- ✓ Temperature profiles during IPL bonding 600 Frequency: 100 Hz, On-time: 1.5 ms, Pulse number: #100 Frequency: 90 Hz, On-time: 1.5 ms, Pulse number: #100 500 - Frequency: 80 Hz, On-time: 1.5 ms, Pulse number: #100 Temperature (°C) 300 500 \uparrow Frequency = \downarrow Cooling time ↑ Heat accumulation= ↑ Peak temperature 100 0 2 10 12 16 18 20 8 14 4 6 0 Time (s) To verify the effect of frequency, it was irradiated under three conditions (100, 90, and 80 Hz).
- Frequency significantly affects thermal management through cooling time control.

34

* Cross-sectional SEM image of flip-chip package solder joint

- Temperature monitoring confirmed that 30 pulses generated insufficient thermal energy (173°C < 217°C melting point), preventing solder liquidation and bonding.
- Cross-sectional SEM reveals clear bonding failure: no metallurgical interface formation between solder and Cu pad.

* Mechanical Reliability Evaluation by Die Shear Test

• Die shear testing was performed to quantitatively evaluate the mechanical strength of solder joints produced by optimized IPL process versus conventional reflow.

<Back>